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INTRODUCTION

Variable atmospheric conditions of winds and temperatures can cause a
significant scatter about average values for sonic-boom intensities at
ground level. Furthermore, booms created by airplanes flying at high
cruising altitudes are often sufficiently intense, even for statistically
average conditions, to cause serious concern. It is therefore imperative to
have some realistic quantitative knowledge about the magnitudes and
frequencies of such scattering by wind-and-temperature variations to
serve as a basis for intelligent planning and for a sensible policy regarding
the future of commercial supersonic transportation.

There are many ways (other than the obvious factors of airplane size,
Mach number, altitude, etc.) by which a big change can be created in
sonic-boom intensity at ground level. Although this paper is restricted to
just one important category, for proper perspective on the total problem
the following table is included of some of the many possibilities which will
require careful analysis. Here the x-axis is horizontal, taken along the

* The first portions of this paper were completed by Mr. Dressler during a one-year
appointment at FFA.
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flight path, y perpendicular to .r, and z the upward vertical axis; A denotes
general at nmspheric pmi)erties, 7' teniiierature II wind, and t ime:

CONDITIONS FOR CHANGES IN BOOM INTENSITY


Steady conditions Unsteady conditions

I. A (z)  only, wit function of  r, y,  or
la.  7'(z)  and W-=- 0
lb.  T(z)  and  W(z)

2.  A (y,z)
7'(y,z)  and W 0
7'(y,z)  and  W(y,z) 


3. Flight maneuvers with:
3e.  T(z)  and W = 0
3b.  T(z)  and  W(z)
Constant, level flight with:

T(r,y,z,t)  and W = 0
T ( r,y,z,t)  and  W(.r,y,z,t)

Flight maneuvers with unsteady  T
and/or unsteady W

Analysis of case la by linear weak-shock theory is equivalent mathe-

matically to ordinary geometrical-optics theory, with reciprocal of tem-

perature analogous to index of refraction. This case has been subjected to

considerable study by many investigators. Case 3a likewise has been

studied by Rao [1], Randall [2], Lansing [3], Warren 41 and others. The

case lb is the subject of this paper; and by utilization of the computational

procedures to be described, case 2b also could be analyzed without addi-

tional difficulties. The other possibilities tabulated above may present-

mat hernatical difficulties, and attempts at analysis have thus far not been

made to our knowledge.

If a boom magnification or focus occurs within t.he "steady" categories,

the afflicted ground area will extend over a rdatively long path, parallel to

the entire flight path, while the atmospheric conditions hold more or less

constant. High-intensity areas in the "unsteady" categories will, however,

be transient probably affect ing relatively limited ground areas.

A comprehensive study of sonic-boom magnificat Mils can probably best.

be undertaken by inathematical methods rather than by exiierimental

measurements, because of the extreme difficulty to position, in advance, a

pressure-recording instrument in or near an area where a peak magnifica-

tion will occur. There are so many parameters entering into this problem

that it is prad ically impossible to guess in advance where to look for a

magnification region. When just a few instruments are placed miles apart

across a wide sonic-imom carpet, the peak reading tunong the measure-

ments usually does not approximate the values attained in some small

focal region which niay exist as a narniw band somewhere between the

instruments. Therefore, the totality of measured values taken to date on

sonic-boom intensities probably does not give even a rough indication of
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the scatter which may exist in the actual peak values of the disturbances.
With a basis, however, of some 80 published experimental measurements
(after normalizing these measurements for differences in altitude, Mach
number, and other significant parameters), Lundberg [5] calculated a
scatter measured by a standard deviation of 30 percent above the average
values. The actual situation probably would exhibit an even larger scatter
if these measurements had included the peak magnified intensities.

BASIC MATHEMATICAL THEORY

An airplane in a supersonic stream creates a complicated pattern of
strong shocks and a nonlinear flow field. At a comparatively short distance
away these combined effects merge to create the familiar Mach cone,
which, as the exterior boundary of the disturbance, is a strong conical
shock wave. However, the disturbance is rather quickly reduced at a
distance away from the source, by viscous action and by geometrical
expansion, so that it can then be regarded as a linear wave motion; and it
takes on the form of the so-called "N-wave." The front and tail pressure
jumps of this N-wave correspond to the original bow and tail shocks
arising at the airplane.

The steady case lb will be analyzed in this paper. A previous investiga-
tion of this case was made as part of the activities of the "Project Big
Boom" in 1960, which included besides the mathematical calculations also
experimental measurements. These were taken at four stations stretched
across the flight path in Nevada. Results from the Project Big Boom
("PBB") have been reported by Reed 16,7], and by Reed and Adams [8].
The PBB calculations were made for Mach number M = 1.5, for a simple
wind structure (constant direction, linear velocity from zero at ground to
200 knot s at the 40,000 ft cruising altitude), and for a linear temperature
dist ribut ion from +20°C to —50°C at these levels. Our initial calculations
were made on the same atmospheric model (the PBB model), to serve as a
check. Our results, however, disagree considerably with the PBB results
because we have used the exact mathematical formulation for geometric
acoustic propagation in winds, whereas the PBB calculations were based
upon a simplified theory due to Rayleigh [9] which is not altogether
applicable to sonic-boom calculation. This point will be discussed in detail
in a later section.

We first give a brief outline of generalized geometrical acoustic theory
(weak-shock theory) with winds. This serves as the basis for all of our
calculations: In order to use the summation convention for repeated sub-
script s, we here denote (x,y,z) by (xj, 12 ,x3). Let the moving surface formed
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by a weak shock wave be given by t = IV(.rhx2,-r3): thus at any moment
t = tr,the shock surface in space is defined by the equation  I.,  =
One then considers the normal direction to the wavefront given by grad IV
and introduces the "wave-normal vector" p defined as = grad IV. The
wind velocity vector is denoted by rt (ul,u2,/0), and the scalar r denotes
local sound speed and is a function of temperature. starting from the
basic equations of fluid dynamics and associated discontinuity conditions,
the nonlinear partial differential equation for the unknown wavefront
function W can be derived as

	

= (1 — = 1 — 2u,117,1 (1)

which is the general "Eicolial" equation for geometrical acoustics. The
three terms on the left side are the same as in the no-wind case, but the
wind vector adds nine additional terms to the right-hand side compared
with the simple Eiconal equation e2(I1T,i)2 = 1 for geometrical optics or
geometrical acoustics without winds. The wind velocity at any point may
be subsonic, transonic, or supersonic with respect to the local c. In the
supersonic case, IWO separate wavefronts exist (a fast branch and a slow
branch). Further details can be found ii) Dressler [101 and a complete,
rigorous derivation ii) Keller 111]. We let denote the unit vector in the
direction of it, and r) is the normal velocity of the wavefront at any point.
It can be proved that

1

(2)and 

' ! = ! cos 1,t,

where ik is the angle bet ween the directions of p and of rt. The -1- sign is
taken for the subsonic, transonic, and fast-branch supersonic cases, and
the — sign for flu, slow-branch supersonic case. When Eq. (1) is written as
a partial differential equation in the quantities pi

0 = (.27) — (1 — 11,02 (3)

the Hamiltonian is independent of' the function IV explicitly, and is
therefore already in "canonical form" (Courant-Hilbert [121). Accordingly,
for the "characteristic strips," the associated system of 6 ordinary differ-
ential equations (the Hamiltonian ('quations) which define the ray- and
wave-normal directions is



dxl(a)
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(4)

1 ± 2c\p?„p?,
da


dx2(a)
± 2c.Vp2,p22u2

du


dx3(a)

= 2c2p2
ap2

aac
± 2cN/p2, p?2u 3

dependent upon given forms

of  c(x)  and  u(x)

da


dp, (a)

— 2c p
ap3

aac

ax,


a3C

da


dp2(a)
da


dp3(a)

ax 2

aac
da ax3

where u is any parameter as independent variable, .r(a) any ray, and 73(a)
its associated wave-normal vector. The rays are the projections into the
(xi) 3-space of the "characteristic lines" of the original partial differential
equation in the  (x1,W)  4-space. The — sign is taken only for the slow-
branch supersonic case.

One notes immediately that in the trivial case when c and ft are constant,
t hroughout the medium, then is constant. Hence the d.ri/da quantities,
which define the tangent direction to the rays, are constant, and thus the
rays are straight lines, and wave-normal directions are constant.

Since the coefficients in the first three equations of (4) are scalars, it
follows that :

(a) If Fl 0, then the ray is parallel to  P.
()) If Fiis parallel to p, then the ray is parallel to

In all other cases t,he rays and wave-normals will have  different  directions
at each point.  It  was for the purpose of emphasizing these relations (a) and
(b) that the brief sketch of geometrical-acoustic theory was introduced.
These relations show that ray directions and wave-normal directions will
approximately coincide  only if  the wind velocities are small (relative to c)

and/or if the wind direction is  only slightly  inclined to the wavefront
normals. Conversely,  when wind relocities are large and warefront directions
are obliquely inclined to the wind, (be directions of rays and ware normals will
direrge considerably; then a careful distinction most be made between ray
directions and ware-normal directions, as warefronts are no longer almost
perpendicular to the rays.
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When the parameter 0- is suitably scaled. 1 he first three equations of (4)
can be written in tlw form

di
--=± 6,

du
(5)

Equations (2) and (5) proved as indicated are the fundamental relations
governing the behavior of acoustic propagation in winds. These were taken
as basic assumptions rather than as provable relations by Milne 1131 in
what was probably the first paper to develop the full mathematics govern-
ing acoustic propagation in strong winds.

To summarize, it is thus seen that the two important atmospheric
parameters affecting sonic-boom propagation are temperature distribu-
tions and wind distributions. In linear geometrical-acoustic theory the
temperature variation, through its effect on local sound speed, is strictly
analogous to the reciprocal of index of refraction in geometrical optics,
and thus introduces no complexities into the calculations. Winds, however,
have the combined effects of introducing nonisotropy into the propagation
medium and also of introducing convection, thus adding in general the
many extra terms to the basic mathematical expressions. The winds cause
acoustic wave fronts to be inclined obliquely to the acoustic rays; the
simple orthogonality relation between these directions no longer prevails.

Since we neglect dissipative mechanisms such as viscosity in this theory,
and since the rays as characteristics define the subsequent path of an
initial disturbance, it can be shown that acoustic energy in winds must
still be conserved along a "ray tube," just as in the simpler theory. To
solve a sonic-boom propagation problem, therefore, it is only necessary to
calculate the six unknowns defining the rays and wave-normals.

INTEGRATION METHODS FOR RAYS AND WAVEFRONTS

SOLUTION BY HAMILTONIAN EQUATIONS

For numerical solutions we favor the Runge-Kutta 4th order integration
method applied to Eq. (4). Initial conditions to start the computations
along any ray consist of the six quantities xi(ao) and pi(o-o) for initial
position of the ray and initial wavefront orientation. After a system of
rays has been calculated, relative energy intensities may be obtained by
utilization of the ray-tube energy conservation law.

Although system (4) is in general too complicated to permit analytic
(non-numerical) solutions, we have found one nontrivial exact solution of
Eq. (4) for the case of a sonic boom with a linearly varying wind velocity,
for a crosswind direction. Details of this solution can be found in Dressler
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1101. By comparing our numerical integration results against this exact
solution, we have been able to determine the required magnitudes of
integrat ion intervals so that our numerical results will contain errors less
than 0.1 percent.

Although we recommend integration of the system (4) for the analysis of
more complicated cases such as 2b listed in the preceding table, for at-
mospheric conditions A (y,z) which might occur when a flight path is
taken parallel to a mountain range or to a seacoast or lakecoast, for the
simpler case lb which we are here analyzing it is slightly faster to calculate
the rays and wave-normals by direct application of a generalized Snell's
law. In all of our following calculations, we have therefore used the Snell's
law approach:

SOLUTION BY SNELL'S LAW

Alternatively, instead of integrating Eq. (4) directly, one can calculate,
after dividing the medium into piecewise-constant thin layers for tem-
perature, wind magnitude, and direction, by applying Snell's law for the
refractive behavior at the discontinuities at each interface together with
the known solutions (straight-line rays and constant wave-normal direc-
tions) within each layer.

Snell's law is merely a condition along an interface expressing continuity
bet ween an incident wavefront, the refracted wavefront, and the reflected
wavefront. From the requirement that these wavefront hypersurfaces in
.r, y, z, t space should join together continuously, with no time-delay,
where they intersect the (stationary) hypersurface of the interface, ele-
mentary vector analysis yields Snell's law for acoustic behavior in winds:

sill 	 sill OT sin OR

Hi PT jPR
(6)

for t he t hree wavefronts, where MOT or On) is the angle between the wave-
normal direction, given by 1),(75,, or fik), of the incident (transmitted or
reflected) wavefront and the direction N normal to the interface across
which jumps in temperature and winds may occur. The relation in Eq. (6)
for the reflected waves is ignored in the calculations; it is consistent with
the geolnetrical-acoustn.s approximation to neglect reflected waves,
except in the case of total reflection, since in the limit for very thin layers
and hence small jumps in e and i the amplit tides of the reflections die out
sufficient ly rapidly, as indicat,ed by the Fresnel formulas.

It should be emphasized that there is no reference in Eq. (6) to the rays;
only the wave-normal directions are involved together with the wave-
normal velocities. The wind effect enters through the anisotropic behavior
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of the wave-normal velocities, which are thus functions of the angle 0/ and
the unknown angle OT, as indicated by Eq. (2). The rays are used only to
fix the position at each interface where the next application of Snell's law
is to be made.

It might appear from the elementary form of Eq. (6) that there is no
difference here from the simple no-wind theory, but after replacement of
f) by Eq. (2) and sonic vector calculations, the generalized Snell's law with
winds for the wave-normal directions takes the form for passage from the
nth to the (n — 1)th layer,

c„__, sin 0„
sill— (7)

APPLICATION TO SONIC-BOOM PROPAGATION

Two possible formulations exist within this theory for sonic-boom calcu-
lat ions. (a) Either the airplane source may be considered as fixed in space
in a moving stream, consisting of the supersonic mainstream determined
by Mach number, plus the added variable subsonic winds, or (b) the
airplane source may be considered as moving at the Mach number of the
flight in a medium consist ing only of the variable subsonic winds. Formula-
tion (a) might lend itself more easily to calculations for the interior dis-
turbance within the shock envelope, and would include a "double" ray
system, but (b) permits t he calculations for intensities just  at  the Mach cone
(corresponding only to the initial pressure rise at the beginning of the
N-wave) to be performed with some simplification. As the airplane moves,
at each moment a wavefront originates at the moving source. These
propagate in the winds as distorted spheres forming a distorted Mach cone
as their envelope. Disregarding the internal disturbance, the envelope of
wavefronts (Mach cone) may be considered as the only wavefront of
interest, thus attent ion need be given only to the subset of rays and wave
normals associated with this envelope. This procedure is rigorously justi-
fied, for example, in Warren and Randall [14], and was employed also in
t he PBB calculat ions [6]; it is altogether sufficient for a study of changes in
sonic-boom intensity.

Let It be taken in the direct ion of the airspeed vector, along the axis of
the airplane. For the effect in-the-small at any instant to, the wave-normals
(drawn from the momentary disturbance position Po) which are associated
wit h the envelope will lie on a cone (not, the Mach cone) defined by the
angle (1) as parameter. The Mach cone, shown by dotted lines in Fig. 1
is orthogonal to these lines terminating around the circle swept over by <b.
The angle (I) = 0 defines an initial direction directly under the airplane,
and the pencil of lines corresponding to —90° < (13 < 900 are those initially
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directed downwards. The unit wave-normal vector P with respect to the
axes will have components

'75= VA/

= — —1/M2 sin c13 (8)

= — N/1 — 1/M2 cos (13

Then let new axes  (x,y,z)  be taken with x in the direction of the ground
course of the airplane. Viewed from these ground axes, it can be shown that
the only effect of the wind and wind gradients in-the-small is to rotate the
Mach cone axis away from the x-axis. With the components of the wind
velocity vector ft at the airplane denoted by  (u,,tty,0)  with respect to the
ground axes, the corresponding components of P are

p = aß —

q = (9)

r =

where  b = —up/ A  and  ct2= 1 — b2. The ground speed  G  is  G = aA
The wave-normal velocity DI for any direction is given in accordance
with Eq. (2) by

D = 270 (10)

MACH CONE

\
0

cID

WAVE- NORMAL

CONE

Figure1.
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The init ial directions for the rays are then described by the (unnormalized)

direct ion numlu.rs, with respect to the ground axes,

R. = cp ri ,

R = cq • 11,,

h 's = cr

in accordance with Eq. (5). With the atmosphere divided into thin hori-

zontal layers, the nth layer at the airplane height , the first calculation

with Snell's law starts with cos 0„ = —r, for any fixed 43, where  0,,  is the

angle of incidence of the wave-normal in the nth layer. The ray directions

are next deterniined in terms of in order to obtain the next interfacial

posit ion where Snell's law is again to be applied. If at any step the solution

shows sin 0 > 1, then calculations on that ray are stopped, since total

reflection upwards has occurred.

For all of our calculations we have chosen 4) at 40 intervals bet ween

—88° < (1) < 4- 88°, thus using 45 rays per problem. By comparison with

the exact solution previously mentioned, we have determined that 1,000
layers are sufficient to reduce errors to less than 0.1 percent. For many rays

100 layers are sufficient, but rays for values near 1. = ±90° require the

finer mesh size for this accuracy.

The relative variations at ground level in overpressure at the shock

front and the energy intensity available there can be determined by

studying t he contraction or expansion of a ray tube in the following

manner.

I f Ap denotes the jump in pressure across an acoust ic shock, p t he density

of the basic flow, and Au the magnit ude of the jump in velocity, which is

always directed normal to the wavefront, the quant ity Ap Au = (Ap )2 /pe
measures the acoustic power per unit area over the shock surface (see

Ref. 11). Ap is the important quantity commonly called t he "overpressure"

in sonic-boom measurements.

Let us consider that the ratt) at which energy is supplied to the at.mos-

phere by a part icular aircraft will be a function of its airspeed and the local

temperature, disregarding other parameters. Hence the acoustic power

P =  •(A , 7', . . . ) =  P(31 e ,c , . . . ).  For our analysis M and c are held

fixed. We first st udy t wo adjacent rays, separated by a small A4) = 4);.,

interval, which leave the source at to. These st rike ground at points

(r,41,,th,1) and  (.r„yi).  Then, after a small At interval, an identical ray

pair will t ravt.1 from the new position of the source, !IOW displaced by a

distance in the ac-direction. The area on ground enclosed by these


four rays comprising the ray tube is a parallelogram with area a =

GAtlyi — y, . The area of a normal cross sect ion of t he ray t ube at ground
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level is therefore equal to — R,a,  where  R,  is the (normalized) direction
cosine of the ray at ground level. Along any fixed ray tube, input energy
= output energy. The input energy equals (M)/360)PAt, and the output is
given by local energy intensity multiplied by the normal area of the tube.
Let  6  equal the approximately mnstant time required for the shock to pass
a fixed point, considering now the shock to have a finite thickness. Then the
energy intensity available at ground, where the wind velocity is negligible,
is ApAtai = (b/p0co)(4)2 where the 0 subscript refers to ground level.
Hence, equating energies gives

,6,43 

PAt — 	 (4)2(4?„(Mtly1+1 — yd)

360 Poco

Solving for the overpressure yields

Acl)

Q .G IYi+i Y

which is the fundamental quantity calculated in all our analyses of over-
pressure variations. The energy intensity available at the sonic-boom
wavefront is proportional to (4)2.

In the above we have assumed that the energy flow from the airplane to
the atmosphere is nondirectional, i.e., not a function of (1). A weighting
factor could of course be inserted to include any directional behavior, but
this would result in only a higher-order correction, not changing our
results significantly. If we needed the actual magnitudes of the overpres-
sure Ap at ground level, the use of inviscid linear theory throughout would
not be sufficient. More precise nonlinear results or measurements would be
needed to furnish the values of input energy, but for present purposes,
these would constitute only superfluous initial conditions to be applied at
the input of the ray tube. Also, cumulative effects of viscosity over the
total ray path would require inclusion. However, this will not be significant
for our comparisons since the effect largely disappears in the ratios. For
the comparisons, these various refinements are not required; hence the
linear acoustic theory is adequate for our purposes.

RESULTS ON THE LINEAR ATMOSPHERIC MODEL
(i1/ = 1.5, ALTITUDE 40,000 FEET)

For 1 he Plili at mospheric model with linear wind velocity and linear
temperature variation described above, we have calculated ray patterns
and peak overpressure behavior for five wind directions with respect to the
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air-speed direct ion. Results for one wind direction (the headwind case) are

shown in rig. 2a . To illustrate quantitatively effects of temperature and

wind, we have included also analogous results for the simplest case (con-

stant teinlierat tire alai no winds) and for the next simplest case (the stand-

are linear temperature variation, but no wind). This latter model causes

upward reflections for all rays initially oriented for > 48°, so these

rays do not reach the ground. Calculations were made at every 4th degree

for cf, but circles in Fig. 2a show every 10th degree, for simplicity. For the

wo result s including both temperature and wind effects, it is seen that the

PBB calculation (solid line with open circles) and our result (solid line with

clos(d triangles) differ widely. The PBB calculations indicate reflection

for > 39°. but our results indicate reflection for N1)1 > 7°, and the

strike positions under the airplane differ by about 35,000 ft. The t wo sets

of results for the other four wind directions studied likewise differ con-

siderably. For two wind directions, the PBB calculations indicated a

far-field "focusing" region, but our calculations with the more exact equa-

tions failed to confirm this effect for the simple model used. Further details

can be found in Ref. 10. The PBB calculations were undoubtedly correct,

and we believe ours are also correct ; these differences arise because we have

used the exact linear acoustic theory, valid for arbitrary winds, whereas the

PBB calculations were based upon the simplified Rayleigh approxima-

tion [9]. This approximation, which does not distinguish between rays

and wave-normals, has been successfully used for many years for ground.

level acoustic predictions connected with nuclear blasts, and is described,

for example, by Cox 115]. In such applications, however, the rays are close

to ground where the winds are slow, and the ray directions of interest are

closer to horizontal than in sonic-boom calculations (where the winds are

also very large at high altitudes). It thus appears that in sonic-boom calcu-

lations, where wind velocities are large and angles between rays and wind

deviation are large, the Rayleigh approximation for geometric acoustics is
inadequate; the exact formidation which distinguishes between ware-normals
and rays should be used.

For the five wind directions which we have computed on this atmospheric

model, we have found the maximum value of overpressure Ap occurring

over each sonic-boom carpet. If we make a comparison with the peak Ap

occurring in the "ideal" case under identical conditions, but without

winds, the ratio MI = Ap/Apid,,, represents the peak overpressure "magni-

fication" caused by the winds. Values for this ratio are graphed in Fig. 2b

for the five cases. One notes that the wind has little effect in reducing the

ratio (minimum value is IT1 = 0.91 for the tailwind case), but has con-

siderable effect in increasing it: (up to 2.21 for the headwind case). Since

energy intensity varies with (Ap)2, the maximum energy magnification is
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about 4.9 times the no-wind conditions. If a probability density curve is
generated from the data of Fig.  2b,  on the basis of all directions occurring
with equal probability, 1 he result is a highly skew distribution, truncated
at 0.91 and 2.21. Values on this distribution for average, median, and
standard deviation of On are:

average 1.23
median (and no-wind case) = 1.00 (14)
standard deviation r = 0.40

As the curve is highly nonnormal, the value of a is not very revealing, but
one sees that the average overpressure magnification for all winds is 23
percent higher than the value for the ideal no-wind atmosphere. Further-
more, all the cases (50 percent) where the OR is reduced lie in a small
interval below the median, but the other 50 percent of the cases where an
is increased stretch out far above the median to a possible maximum of
2.21. These characteristics for a simple model will be compared in a later
paragraph with our more general results for a very large class of statis-
tically possible atmospheres considered globally.
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AREALISTIC STATISTICAL MODEL FOR GIAMAL
ATMOSPHERES

Although results on simple atmospheric models such as the PBB model
may reveal some essential features of sonic-boom scatter, there is never-
theless a great need for results produced by realistic complex atmospheres,
encompassing the multitude of possible variations, both in-the-large and
in-the-small, which do occur day by day in the earth's atmosphere, and
with a relative frequency of occurrence of these variations in terms of
accurate probability information. We are fortunate that such a realistic
"global" atmospheric model for winds and temperatures has just recently
been developed at the I nternat ional Meteorological Institute in Stockholm.
Although this ambitious program is still in progress, enough reliable data
and processed results are now available to furnish an accurate basis for
realistic sonic-boom analyses. This atmospheric investigation has been
conducted over the past years by I. Holmström, and the authors express
their sincere gratitude to him for his advice and active cooperation fur-
nished in many discussions. A partial description of his method was pub-
lished in 1963 (Holmström 1161). Briefly, the scheme consists in deriving
from a multitude of measurements a sequence of "empirical orthogonal
functions." These are used as the basis for expansions in series for various
atmospheric properties. The procedure may be used for analysis of any set
of data where some kind of comparatively regular behavior is expected
along just one axis of the variables (here, the altitude, or equivalently the
average pressure p taken as the basic independent variable). For any
atmospheric property z(p,x,y), a formal expansion is written

z(p, x,y) = E zk(x, y) Fk(p) x, y) (15)
k=1

in basic functions F k, with r„as a remainder term. The region of interest in
the atmosphere is taken as a pressure interval  P  from about 10 db to 1 db
(ground level to about 50,000 ft, in terms of average conditions), and over
an area S with dimensions comparable to a continent or larger. From
thousands of measurements taken by balloon soundings over ground
points (xi, pi) for altitudes corresponding to many pressure points p„„the
procedure consists in minimizing the variance a! of the residual r„(p,x,y)
in Eq. (15), when integrated over the total atmospheric region under
consideration. This means minimization of

= 1 f f sfp(.7— E zkFk)2 dS dp  (16)
ST
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for each value of  n =  1, 2, . . . successively. By methods of variational
calculus, a sequence of equation pairs can be obtained for the unknown
functions  [F1(p) ,z, (. r ,y)1,1F2,z21, . . . .  These equations, plus a normalizing
condition on the  F k,  are then solved successively by an iterative numerical
method using the thousands of data points of the original measurements.
The minimizing procedure leads to the orthogonal property

fpFk,„,„ ,o, k m

	

k = m
(17)

and also assures that the "empirical orthogonal functions"  F k(p)  will
produce the fastest possible convergence for describing possible atmos-
pheric states. For any fixed  k,  the large set of values obtained for  zk(xi,y.i)
is regarded as a set of values of a random variable, with known mean,
deviation, cumulative distribution, etc. The statistical behavior of the
atmosphere is thus described by the statistical behavior of the coefficients
zk  in Eq. (15).A similar scheme for atmospheric description was also re-
ported by Obukhov [17]. Our sonic-boom analysis has, however, been
based upon the published and unpublished data furnished by Holmstrom.
The data used by Holmstrom for calculating the empirical functions were
obtained from more than 2,000 temperature and wind soundings measured
on 8 days in 1959. In these measurements, continental areas have been
overrepresented compared with other global areas. All expansions are made
basically ill terms of the pressure variable p; this is subsequently converted
to altitude through use of curves for average pressure-altitude behavior.

Temperature Variations. A possible atmospheric temperature distri-
bution can be represented as

T = o(p) E Tkrk(p) (18)

where each random variable Tk [ has known statistical properties. The
first term To(p) represents the overall average obtained, and is thus the
distribution for a "standard atmosphere." Its behavior is shown as the
central line labeled T. in Fig. 3a. The vertical scale is in terms of average
pressum and corresponds to altitudes from ground level to 50,000 ft. The
first three orthogonal lemlierature functions Ti(p), 7-2(p), and 7-3(p) are
displayed in Fig. 3b. The remaining six lines in Fig. 3a illustrate how a
specific dist ribut ion may be built up about To using Ti and  T2.  These six
curves miresent To ± 127-1 ± 37-2 where 12 and 3 correspond approxi-
mately to specific values of the random variables ] and 1T2), respec-
tively, which are equal to their standard deviations. We have not used
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higher-order terms such as T4, 75, . . . because the data were not yet suffi-
ciently complete for their precise definition. The first three terms, however,
are altogether sufficient to describe the gross temperature effects for the
atmosphere, but local variations, such as the familiar temperature inversion
at Los Angeles, would require inclusion of 4th, 5th, or more terms for
precise statistical description.

We have first tested Holmström's statistical coefficients for individual
days: Within the maximum and minimum values actually measured, the
distributions are very nearly normal and can safely be taken as truncated
normal distribution for computational purposes.

Winds.  For the general (horizontal) wind velocity vector W = (u , v),
where ±u measures a west-to-east velocity, and d-y a south-to-north
velocity, the wind representations are

= E UkAk(P), = E vkBk(p) (19)

The orthogonal functions  A k and B k for the first three terms are in Fig. 3c,
d,  and  e.  These graphs in Fig. 3 are reproduced from Ref. 16 by permission
of the Tellus Journal and the author. (The F k functions appearing in these
graphs are not significant for our present application.)

We have chosen 50,000 ft as the fixed altitude for our analysis because
the atmospheric data are thus far not complete for greater heights. Figure
3c shows that the average basic wind behavior is essentially unchanged
(almost linear) up to about 40,000 ft, but then changes swiftly to a new
regime above. Thus, any gross differences in final results should occur
only between the ranges above-and-below 40,000 ft. This means that the
general behavior of sonic-boom scattering for 50,000 ft may be extrapolated
to 60,000 ft, but such would not necessarily be the case if extrapolations
were attempted from results below 40,000 ft.

MONTE-CARLO GENERATION OF ATMOSPHERES

Using the known values for mean, deviation, and upper and lower bounds
of the nine quantities T1, Tz, T3,u1,uz, u3, v1, vz, y3,we first generate for each
model nine random numbers in the [0,1] interval. The corresponding points
on the cumulative distribution curves for the nine statistical quantities
given above then determine the coefficient in the expansions (18) and (19).
For convenience, the distribution curves have been taken as normal, but
have been truncated to be consistent with the maximum and minimum
values actually measured. In this way we avoid the remote possibility of
ever generat ing a model beyond the limits of realistic significance. Due to
the presence of prevailing winds, the means for the wind coefficients are
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nonzero, e.g., ti,„„.„„ = 10.5, a = 9.0; ri„,,,„ = —1.36, in in /sec. We have also

computed t he correlation coefficients p, and find t fiat p(ul,v,) = —0.05,

1'2) = 0.18, p(u3,r3) = 0.16. These values are sufficiently small so the
correlations can be ignored in generating the models.

The total time needed on the computer to generate the random model,
calculate 45 rays, locate the value and position of peak overpressure, and
process 1 he results is less than 11 minutes per atmosphere. We have com-
puted 480 cases covering with equal probability all flight directions relative
to the winds. This represents about 11 hours running time on the 7090
computer of the Swedish Air Force.

The quantity of primary interest is the magnification 51Z; of the peak
overpressure  Ap  for the jth atmosphere compared with the peak value for
an ideal no-wind case with standard atmosphere temperature distribution
or for some average or median case. Calling Q = — 1G qj1 — I from
Eq. (13), where the position y has been chosen where the peak overpressure
occurs, then

	

APi [  Q

ideal

i -112
Q idealAP 


The magnification can, in principle, vary beyond 1 without limit, but below
1 it can range only down to zero. We therefore make the distribution less
unsymmetrical by considering the logarithm:

log 51i; = log Qi log Qid,.„, C (20)

and investigate the distribution of the random variable I Ail. The constant
C causes merely a shift in the axis and has no statistical significance.

GENERAL RESULTS FOR M = 2.2 AND 50,000 FEET

Scatter in Overpressure. Figure 4a shows the computed mean of the Ai
values as a function of number of cases computed. It is seen that our total
of 480 cases is more than sufficient to produce a stable limiting value:

= —0.40 (21)

Figure 4/) shows the standard deviation of the Ai's and also indicates that
480 cases are sufficient for a reasonable approximation:

jr .( 1 _

= 0.053 (22)
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Figure 4e is t he probability density diagram for t he peak overpressure

magnification in terms of the A variable. Its median value is

	

A ndian = — 0.4154 (23a)

whicli is displaced from the mean due to the skew shape. We have also

computed the "ideal" case for no-winds with only the standard atmosphere

temperature To. Its peak, directly beneath the airidane, has for its value of

overpressure magnification, in terms of the quantity A,

	

jdei = —0.4159 (23b)

which is almost exactly our computed median value (23a). This shows a

behavior identical with out results on the PBB model (14), and indicates

that the median, not. the mean, is the appropriate basis for comparisons of

wind effects versus no-wind conditions. Just as in our results (14) on the

PBB model, all the cases below the median lie close to it, but the remaining

50 percent of cases where Sri is greater than 1 (compared with the median

case) cover a large interval above the median. The standard deviation is

thus not an accurate measure of the distribution for OR > 1. This shape

also gives the mean a higher value than the median, similar to our PBB

results (14). The major portion of the distribution ranges from A = —0.43

to —0.30. Beyond this there are 17 cases stretching up to A = +0.055.

Again choosing the median case as our reference for NI., and converting

from logarithms to the actual overpressure magnification, the results are:




Fraction of Total


Cases Exceeding Ort

0.96 1.00

1.00 0.50

1.10 0.12

1.20 0.06

1.50 0.023

1.85 0.011
9.97 0.006

2.95 0.002

Oiw notes that the peak value obtained ( R = 2.96) in these 480 random

cases compares closely with the peak obtained (XL = 2.21) in our calcula-

tions on the PBB model atmosphere.
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Scatter in Strike Positions. For each sonic-boom carpet computed, we
have selected the point (i',9) where the peak overpressure occurs. The
value. 9 measures the ground distance from the flight path to the line of
maximum intensity. The standard deviation of these distances reaches a
stable limit at 480 cases, which is

o-; 30,000 ft (24)

The probability density diagram for the quantity { pi i has the following
behavior: The values between 0 and 10,000 ft follow closely a normal curve,
but the remaining 20 percent of the cases lie stretched over a wide interval
from 45,000 ft up to about 100,000 ft. Thus 20 percent of the boom peaks
strike outside a band about 17 miles wide beneath the airplane.

CONCLUSIONS

We have not yet had time to make a detailed study of individual cases
with very large 91I, and cases with large 191, but a cursory inspection indi-
cates that a large partj of the 51Z cases are coupled with the large 19Ivalues.
These high values of Ort in the far-field may be caused by a shrinking
together of the adjacent rays making the quantity ii - 9i! small in

q. (13), or by a reduction to very low values of the ray direction cosine
in (13). If the latter possibility occurs in some cases, this would mean

that larger overpressures are associated with "grazing" phenomena in the
far-field. Because of our use of a coarse 4°-mesh for the initial ray angles
it is quite possible that some of these calculated 91-es are too high; if R.
goes rapidly to zero, a much finer LA) interval may be required to evaluate
accurately the Ap at the grazing-zone frontier. However, there are so many
cases of large OR and large 91 that it is likely that many have been accu-
rately evaluated even using the large 4°-intervals. These results would
then indicate some kind of strong magnification in the far-field. The point
still needs detailed study, but the computing time with small A(13 meshes
may become so long that economic limitations might soon prevail. At
present, we can only state the present results which follow necessarily
from t he choice of 4°-intervals. In any case, our results on scatter outside
the grazing zone must be conservative, since we have taken only three
terms in the wind and temperature expansions, and have not considered
rays initially directed upwards, 1.1)1> 90°, which may reach ground and
(.ause large overpressures.
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The result s, even if only partly confirmed by further st tidy. show a

scat ter in overpressure int ensit ies and in st rike locations both sufficient ly

large to cause some concern regarding tlw sonic-boom menace associated

wit h widesiwead supersonic commercial transportation.

The authors express 1 heir grat it tide to Dr. B. K. Lundberg for initial

suggest ions to undert ake this st udy and cont inuing advice, and to Dr. (1.

Drougge and Professor B. Bohn for t heir cooperation and valuable sug-
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COMMENTARY

J. P. GUIRAUD (O.N.E.R.A., Chatillon- sur- Bagneux, Seine, France): Je me

sembh, que l'ocoustique géométrique de J. li. Keller est une théorie de la pro-
pagation des "chocs acoustiques" et non pas une théorie de la propagation des
chocs foibles. Si foible que soit un choc, sa propagation est un phènoméne non
linéaire. En fait les équations de l'acoustique tolèrent des solutions discontinues, en
présentant éventuellement une masse concentrée (du type de Dirac) sur une surface
d'onde, et l'acoustique géométrique prévoit l'évolution de Famplitude de cette
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discontinuité, ou de cette masse concentrée, lorsque l'on se déplace le long d'un
rayon sonore. Il y a plus, l'acoustique géométrique prévoit, en fait, l'évolution d'un
train d'ondes, étalées autoue d'une surface d'onde, dont la largeur est trés faible en
comparaison de la longueur parcourre le long du rayon sonore. On trouve que la
forme du train, ou, comme l'on dit, le signal, est arbitraire, mais que l'amplitude
varie selon les lois de 'I acoustique géométrique. Naturellement si l'on veut prédire
l'évolution d' un tel train, même s'il est de faible amplitude, compte tenir des effets
de convection non linéaires,il y a lieu de modifier l'acoustique géométriqueà la
maniere indiquée par Lighthill dans son article dans le volume jubilaire de G. I.
Taylor.




